

Technische Universität Braunschweig Institut für Geoökologie Bodenkunde und Bodenphysik

Parameterization of models for soil hydraulic properties: Challenges and recent advances

Wolfgang Durner

Sascha Iden, Andre Peters, Efstathios Diamantopoulos, Kai Germer, Tobias Weber, Benedikt Scharnagl

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

May 04 - 08, 2015

Universität Braunschweig

 31rd BKAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO May 04 - 08, 2015

HYPROP-FIT - [C:\Users\wdurner\Dropbox\UMS_Software\Data-tests\Demo4(SAU).bhdx]

A REAL OF A

Technische Universität Braunschweig

X

Retention $\Theta(pF)$

Retention $\Theta(pF)$

Braunschweig

Retention $\Theta(pF)$

www.ums-muc.de

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

www.ums-muc.de

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

Retention O(pF)

Parameterization

... but some are useful"

"All models are wrong … "Models should be as simple as possible … ... but not simpler"

A. Einstein 1879 – 1955

How good (accurate) should a model fit be?

... depends on the intended use of the model

- Field capacity
- Plant available water content
- Mapping of soil hydraulic properties

- RETC to derive secondary properties, e.g., predicting hydraulic conductivity
- Modeling soil water dynamics

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Richards Equation is today's standard model for simulating soil water dynamics

(Infiltration, redistribution, evaporation, transpiration, drainage)

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

Courtesy Kurt Roth

Technische Universität Braunschweig

Extent of evaporation ?Water flow to roots ?

Erosion ? Solute transport ?

Part 2: A look on hydraulic properties

...combined Continuum equation with Darcy-Buckingham equation (here: 1D, vertical).

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K(h) \left(\frac{\partial h}{\partial z} + 1 \right) \right] + s(z,t)$$

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Constitutive relationships

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Van Genuchten retention curve

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

Concept of equivalent pore sizes

Concept of cylindrical equivalent pores leads to a representation of the true pore space as a "capillary bundle".

Allows to derive poresize distribution, water holding capacity, and hydraulic conductivity

Or und Wraith, Soil Physics Companion,

2002

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Equivalent pore-size distribution

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Constitutive relationships

1) Conductivity curve

2) Retention curve (most important curve in soil physics ?)

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

"hydraulic properties": Hydraulic conductivity function

Stolte et al. (1994), SSSAJ

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

capillary tube model

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Khaleel and Saripalli, VZJ, 2006

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Relative conductivity function, $K_r(\theta)$

$$K_r(\theta) = \mathbf{Q} \left[\int_0^{\theta} \frac{1}{h^2} d\theta \right] = \mathbf{Q} \left[\int_0^{\theta} \frac{1}{h^2} d\theta \right]$$

Tortuosity coefficient *l*

$$S_{e} = \left(\theta - \theta_{r}\right) / \left(\theta_{s} - \theta_{r}\right)$$

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

UMS KSAT: Saturated hydraulic conductivity

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

capillary bundle models cut-and-random-rejoin

Childs and Collis-George, 1950

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Capillary bundle model: Mualem (1976)

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

van Genuchten-Mualem model (1980)

retention function
$$S_e = \left(\frac{1}{1 + |\alpha h|^n}\right)^m$$

conductivity function
$$K = K_s S_e^l \left[1 - \left(1 - S_e^{1/m}\right)^m\right]^2$$

$$\alpha$$
 [m⁻¹], *n* [-], *m* [-]
 $S_e(h)$ [-]
 K_s [m s⁻¹]
l [-]

van Genuchten parameters effective saturation saturated conductivity tortuosity coefficient

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

van Genuchten-Mualem parametrization

Typical hydraulic properties of differently textures soils Left: Water retention curves. Right: Unsaturated conductivity curves (Durner und Flühler, 2005).

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

So far: nothing new.

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Part 3: A closer look on hydraulic properties

The wet range

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Wet range: small changes ...

pressure head

Durner (1994), WRR

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Wet range: small changeshave big effects

Durner (1994), WRR

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Using Bimodal Lognormal Functions to Describe Soil Hydraulic Properties N. Romano et al., SSSAJ, 2010

The mid range

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Mid range: fundamentally wrong perception?

Hydraulic Properties: Challenges

- Hysteresis and dynamic effects
- Temporally varying hydrophobicity (mucilage, biofilms, OM)
- Shrinking and swelling porous media
- Heterogeneity and Upscaling
- Chemical and biological feedbacks
- T-dependence and thermohydraulic coupling

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

The dry range

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Dry end: Evaporation Experiments

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Observation (1)

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Observation (2)

e.g. Nimo, 1991

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Observation (3)

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

Part 4: Better shaped hydraulic properties

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Better SHP ...

Ross et al. 1991 | Campbell-Shiozawa 1992 | Rossi and Nimmo 1994 | Fredlund-Xing 1994 | Fayer-Simmons 1995 | Morel-Seytoux and Nimmo 1999 | Webb 2002 |Groenevelt and Grant 2004 | Khlosi et al 2006 | ...

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Adding a film-flow + corner-flow component

Tuller-Or 2001

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Tuller-Or 2001 |Peters-Durner 2008 | Tokunaga 2009 |Lebeau-Konrad 2010| Zhang 2011 | Diamantopoulos-Durner, 2013 | ...

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

(Enhanced) diffusion of water vapor

(Enhanced) diffusion of water vapor by condensation and evaporation in presence of isolated liquid water (Fig. by Shahraeeni und Or, 2012)

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Really good SHP +-0.4 \log_{10} hydraulic conductivity [cm d⁻¹] 2 0 -2 -4 -6 -8 0 -10 5 2 3 5 6 7 2 3 7 6 0 1 0 1 4 4 pF pF

Philip and de Vries 1957 | Saito et al. 2006

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

A parsimonious parameterization: The PDI model

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

PDI model: capillary part

Technische Universität Braunschweig

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

PDI model: non-capillary part

$$S_{\rm ad}(x) = 1 + \frac{1}{x_a - x_0} \left\{ x - x_a + b \, \ln\left[1 + \exp\left(\frac{x_a - x}{b}\right)\right] \right\}$$

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

PDI model fitted to data

PDI model fitted to data

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

Summary: Properties of the PDI model

- Always reaches zero water content at oven dryness
- Continuous water capacity function
- RETC: no more parameters than traditional models, e.g., α , n, θ_s , θ_r
- Very robust
- Implemented in the free HYPROP-FIT software

Fitting Export				
Soil hydraulic model selection				
	original	PDI	bimodal	bimodal PDI
Brooks-Corey	0			
Fredlund-Xing	0	0		0
Kosugi	0	0	0	0
van Genuchten m=1-1/n	۲	0	0	0
van Genuchten mnvar	- C	- C	0	0

Model: VG Model Code: 1100

Source: van Genuchten (1980) Description: traditional constrained van Genuchten-Mualem model ?

Chapter 17 Hydraulic Properties and Non-equilibrium Water Flow in Soils

Wolfgang Durner, Efstathios Diamantopoulos, Sascha C. Iden, and Benedikt Scharnagl

Abstract Accurate knowledge of hydraulic properties for unsaturated soils is critical in the estimation of soil water fluxes by simulation models that are based on the Richards equation. The purpose of this chapter is to review the characteri-

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Does that matter ?

Technische Universität Braunschweig

UFPR

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Part 5: Application Example

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Does that matter (1)?

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO al and a second second

Technische Universität Braunschweig

Does that matter (1)?

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Does that matter (1)?

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig

Does that matter (2)?

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Does that matter (2)?

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Final Excursus: The tortuosity coefficient

Theoretically: inverse of tortuosity!

De facto: empirical fitting parameter

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Excursus 2: The tortuosity coefficient

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig
Negative tortuosity coefficients are an artefact of an inadequate model structure

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Conclusions

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

May 04 - 08, 2015

Conclusions (1): Where do we go?

- The limits of the usability(!) of Richards' equation are not yet explored.
- Many limitations can be overcome by adapting hydraulic functions.
- No replacement of the current standard, rather identifying situations where specific adaptations are needed.
- Limitations are not given by the modeling ability but by the inability to derive appropriate parameters.
- More and better experiments are needed.

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Conclusion (2): SHP parametrizations

- Parameterizations of SHP should be a simple as possible but not simpler
- Traditional SHP have structural deficits
- Conductivity function in the medium moist range is dominated by film/corner flow which can [under certain conditions] strongly affect the water flow
- Avoiding structural errors is of great importance in development of pedotransfer functions

3rd BRAZILIAN SOIL PHYSICS MEETING III ENCONTRO BRASILEIRO DE FÍSICA DO SOLO

Technische Universität Braunschweig Institut für Geoökologie Bodenkunde und Bodenphysik

Thank you

obrigada

Parameterization of models for soil hydraulic properties: Challenges and recent advances

Wolfgang Durner Sascha Iden, Andre Peters, Efstathios Diamantopoulos, Kai Germer, Tobias Weber, Benedikt Scharnagl