
Spatial / Time Variability of

Soil Physical Properties

*Luís Carlos Timm – Federal University of Pelotas, Brazil; 

Senior Associate of the ICTP;  lctimm@ufpel.edu.br                                 

*Klaus Reichardt – Soil Physics Lab., CENA, USP, Brazil

E-mail: klaus@cena.usp.br

3rd Brazilian Soil Physics Meeting 

May 04  to May 08,2015



OUTLINE

• State-space approach: basic theoretical 

aspects;

• Some applications of the State-space 

approach;

• New research topics: present and 

future.



Classical Statistics...

- INDEPENDENCE of observations among 

themselves;

- SAMPLING LOCATIONS in the field are

IGNORED, DISREGARDING the potential

SPATIAL DEPENDENCE of observations

within a field;

- INADEQUATE experimental design as a result.



Taking account the spatial

dependence of observations.....

-Geostatistics Analysis: semivariograms, 

kriging, cross-semivariograms, co-kriging, etc

-Time/Spatial Series Analysis



Time/Spatial Series

Series definition:

-Physical phenomena that, when

observed and numerically quantified,

result in a sequence of data distributed

along time (or space).



“Time” Series (time data 

sequences) examples:

a) weekly average values of soil water storage

at a given location;

b) yearly sugarcane crop yield data for a given

field; etc.



Spatial series (space

data sequences) examples:

a) soil organic carbon content

measured across a field;

b) soil water content values measured

across a coffee field on the same day;

etc.



“Basic objectives” to analyze a  

Time/Space Series (Tukey,1980):

-modeling of the process under consideration;

-obtaining conclusions in statistical terms; 

and

-evaluating model´s ability in terms of

forecast.



“Two” ways to analyze a 

temporal (spatial) series:

1st) “frequency” domain: presence of a 

periodic phenomenum.

Examples are:

-Spectral and Cospectral analyses: many

applications in the soil-plant-atmosphere system.



2nd) “time (space)” domain: to identify the 

stationary components (aleatory or random

variables) and the nonstationary components which

define the mean function of the process.

Examples are:

AR model; ARIMA model;

“STATE-SPACE” model



Analysis of a series in the 

“time (or space)” domain:

Frequent assumption:

series is “stationary”



Stationarity ....

What does it mean ?

-series develops in a “random

way” in time (or space) reflecting

some sort of a “stable

equilibrium” (no trend line).



“Stationary” series: example
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“Nonstationary” series:example
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Statistical tools  for 

analyzing and characterizing

“time (or spatial)” 

variability of data sets



a) Autocorrelation function: to indicate

the distance of “auto-dependence” 

between “adjacent observations” of a 

variable.

“Space series” are collected along

transects at spacings of “” in cm, m, 

km, etc. 



h = 1 lag
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Autocorrelogram plot: an example

95% significance is 0.214 by "t" test
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b) Crosscorrelation function

(CCF):

-to indicate the spatial correlation between

two sets of variables: Y(xi) and W(xi)

observed at the same locations xi. 

Example:

Y = soil temperature; W = soil water content



95% significance is 0.214 by "t" test
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“State-Space” approach:
-the “State-Space” model of a stochastic process

involving j data sets Yj, all collected at the same locations

xi, is based on the property of Markovian systems, i.e., the

independence of the future of the process in relation to its

past, once given the present state;

-It is a combination of two systems of

equations:



1st: “Observation” equation

Yj = observation vector of the process at 

location xi;

Mjj = observation matrix at position xi;

Zj = non observed state vector of the process 

at location xi;

        (1)           xvxZxMxY iYijijjij j




vYj = observation error vector at position xi.

The “matrix Mjj” comes from a set of j 

linear observation equations (all at 

position i):
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Which can be written in the matrix form:
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2nd: “State” equation

      (2)       xuxZ)x( xZ iZ1-ijijjij j


jj= state coefficient matrix (transition matrix) at 
location xi;

Zj(xi-1) = non observed state vector of the process at 
location xi-1;

uZj = is an error vector associated to the state at 
position xi;



The matrix jj comes from a set of  j 

linear state equations (relating position i 

to position i-1):
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Or in the matrix form:
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Applications of the 

“State-Space” 

approach:

Spatial and time 

series















Applications of the 

“State-Space” 

approach:

“watershed” scale



Location of the Arroio Pelotas watershed –

Southern of Rio Grande do Sul state (Brazil).



Map of the main soil types (Brasil, 1973)

25 km 

spatial 
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drainage 
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Arroio Pelotas watershed land uses.

-Native grassland;

-Annual cropping;

-Permanent 

cropping;

-Native forest;

-Silviculture; and

-Cultivated pasture.



Arroio Pelotas

watershed:

Digital Elevation

Model



Primary and secondary topographic 
attributes: DEM

-Elevation;

-Slope;

-Aspect;

-Curvature;

-Upslope contributing area;

-Soil surface roughness;

-Soil wetness index;

-etc.



-Soil samples: spaced 250 m from 

each other totalizing 100 samples;

- Evaluated soil layer: 0- 0.20 m depth

-Measured soil physical and hydraulic 

properties: soil texture, soil bulk density, 

SWRC, saturated hydraulic conductivity, 

soil total porosity, soil organic carbon, 

etc.



Preliminary Results
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The Co-spectrum identifies those spatial frequencies for which 

two sets of observations are correlated with each other regardless 

of their relative location (Nielsen & Wendroth, 2003).
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The Quadrature spectrum measures the contribution of the 

different frequencies to the total covariance of the two sets of  

observations when all of the cyclic variations of one set of 

observations are delayed by a quarter period (Nielsen & Wendroth, 

2003).
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The Phase lag  (or phase angle  is the phase lag between 

oscillations of a given frequency f (Nielsen & Wendroth, 2003)
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The Coherency is a quantitative measure of the goodness of the

correlation between the two sets of observations for various

frequencies f  (Nielsen & Wendroth, 2003).









Research project 

cooperations









New research topics: 

present



Multivariate Empirical Mode 

Decomposition method (MEMD)

Objective: 
• to characterize scale-dependent spatial 

relationships between soil properties of non-

stationary and nonlinear systems, into 

different intrinsic mode functions (IMFs) and 

residue representing different scales.

Huang, N.E. et al. The empirical mode decomposition and Hilbert

spectrum for nonlinear and non-stationary time series analysis.

Proc Roy Soc London A , 1998, 454:903-995.







Wavelet analysis:

-to study nonstarionary spatial series locally with detail

matched to their scale, i.e., broad features at a large scale

and fine features at small scales (Si, B.C. - 2003 – Vadose

Zone J.)

New research topics: near 

future (Cont.)
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