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Classical Statistics...

- INDEPENDENCE of observations among

themselves:

- SAMPLING LOCATIONS Iin the field are
IGNORED, DISREGARDING the potential

SPATIAL DEPENDENCE of observations
within a field;

- INADEQUATE experimental design as a result.



Taking account the spatial
dependence of observations.....

-Geostatistics Analysis: semivariograms,

Kriging, cross-semivariograms, co-kriging, etc

-Time/Spatial Series Analysis



Time/Spatial Series

Series definition:

-Physical phenomena that, when
observed and numerically quantified,

result in a sequence of data distributed
along time (or space).



“Time” Sernies (time data
seguences) examples:

a) weekly average values of soil water storage

at a given location;

b) yearly sugarcane crop yield data for a given
field; etc.



Spatial series (space
data sequences) examples:

a) soil organic carbon confent
measured across a field;

b) soil water content values measured
across a coffee field on the same day;

efc.



“Basic objectives” to analyze a
Time/Space Series (Tukey,1980):

-modeling of the process under consideration;

-obtaining conclusions in statistical terms;
and

-evaluating model’s ability in terms of
forecast.



“Two” ways to analyze a
temporal (spatial) series:

1st) “frequency’ domain: presence of a
periodic phenomenum.

Examples are:
-Spectral and Cospectral analyses: many

applications in the soil-plant-atmosphere system.



2" “time (Space)’” domain: to identity the
stationary components (aleatory or random

variables) and the nonstationary components which
define the mean function of the process.

Examples are:

AR model; ARIMA model;

“STATE-SPACE” model



Analysis of a series in the

“time (or space)” domain:
Frequent assumption:

series is “stationary”




Stationarity ....

What does it mean ?

-series develops in a “random
way” in time (or space) reflecting
some sort of a “stable
equilibrium” (no trend line).



“Stationary’ series: example
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“Nonstationary’ scries:example
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Statistical tools for

analyzing and characterizing
“time (or spatial)”

variability of data sets



a) Autocorrelation function: to indicate
the distance of “auto-dependence”

between “adjacent observations” of a
variable.

“Space series” are collected along

transects at spacings of “a” in cm, m,
km, etc.






Autocorrelogram plot: an example
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b) Crosscorrelation function
(CCF):

-to indicate the spatial correlation between
two sets of variables: Y(X;) and W(X:)

observed at the same locations X.

Example:

Y = soil temperature; W = soil water content



Spatial dependence: two variables
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“State-Space” approach:

-the “State-Space” model of a stochastic process
Involving J data sets Y;, all collected at the same locations
X:, 1S based on the property of Markovian systems, I.e., the
Independence of the future of the process In relation to its

past, once given the present state,

-It is a combination of tw@ systems of
equations:



15t “Observation” equation

Y.(x.)=M

J

5 (6) Z;0¢)+ vy (%) (1)

Y; = observation vector of the process at
location X;;

I\/Ijj = observation matrix at position X;;

Z; =non observed state vector of the process
at location X;;




Vyj = 0bservation error vector at position X;.

The “matrix M;;” comes from a set of |
linear observation equations (all at
position I):

Yl(Xi)=mllzl(Xi)+ leZZ(xi)+ ............ +m1ij(xi)+ le(xi)

Yz(?ﬁ )= m21?1(xi )+ m.zzzz(xi )+ ..... o + mz.ij(xi )+.VY2 (xi)

¥, 06)= 325 06 14 52 06 ) oot 2 () v ()



Which can be written in the matrix form:

YL ()T [Mu My s my; | [z,(x;) vy (X;)
Yz(x,) _ My Moy e, my; y Zz(x,) . sz(x,)
_YJ(XI)_ _mjl mj2 .......... m” | _ZJ(XI)_ _VYJ (XI)_

| | |

non observation
observation observation observed error
vector matrix state vector vector



2nd: “State” equation
Zj(xi)=¢jj (Xi)Zj(Xi-l)"'Uzj (Xi) (2)

(|)-j: state coefficient matrix (transition matrix) at
lotation X,

Zi(X;.;) = non observed state vector of the process at
location X; ;;

Uz; = 1s an error vector associated to the state at
position X;;




The matrix ¢;; comes from a set of |
linear state equations (relating position |
to position I-1):

Zl(Xi )= ¢1121(Xi—1)+ ¢1ZZZ(Xi—1)+ ------------ + ¢1jzj(xi—1)+ Uz (Xi )
ZZ(Xi )= ¢2121(Xi—1)+ ¢2222(Xi—1)+ ------------ + ¢2jzj(xi—1)+ Uz (Xi)

Zj(xi )= ¢jlzl(xi_1)+ ¢j222(xi_1)+ ............ + ¢ijj(xi_1)+ Uz (xi)



Or in the matrix form:

[l
X
+

non observed state non observed state error
state vector at coefficient state vector at vector

pﬁSiﬂﬁﬂ X; matrix position X; ,



Applications of the
“State-Space”
approach:

Spatial and time
series
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NEURALNETWORKAND STATE-SPACE MODELS FOR
STUDYING RELATIONSHIPS AMONG SOILPROPERTIES

Luis Carlos Timm'*; Daniel Takata Gomes’; Emanuel Pimentel Barbosa’; Klaus Reichardt’;
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Embmpa Meio Ambiente, C.P. 69 - 13820-000 - Jaguaritina, SP - Brasil.

*Corresponding author <Ictimmi@ufpel.edu.br>

ABSTRACT: The study of soil property relationships is of great importance in agronomy aiming for a
rational management of environmental resources and an improvement of agricultural productivity.
Studies of this kind are traditionally performed using static regression models, which do not take into
account the involved spatial structure. This work has the objective of evaluating the relation between
a time-consuming and “expensive” variable (like soil total nitrogen) and other simple, easier to measure
variables (as for instance, soil organic carbon, pH, etc.). Two important classes of models (linear state-
space and neural networks) are used for prediction and compared with standard uni- and multivariate
regression models, used as reference. For an oat crop cultivated area, situated in Jaguariuna, SP, Brazil
(22°41° S, 47°00" W) soil samples of a Typic Haplustox were collected from the plow layer at points
spaced 2 m apart along a 194 m spatial transect. Recurrent neural networks and standard state-space
models had a better predictive performance of soil total nitrogen as compared to the standard regression
215.9x276.8mm 4] |
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Neural network and state-space models

Model performances

The models were adjusted in two versions. For
the first version, the last 10 transect points of STN
were omitted in order to make their prediction (Table
1). For the second. the first 10 points of STN were
omitted with the same objective (Table 2). As already
mentioned, the statistical measures considered for com-
parisons between models were the MSE (equation 8a)
and the MAPE (equation 8b).

It can be seen that among the models without
latent variables, 1.e., among the true regression mod-
els, the original VAR model gives the worst results (in-
dependent of the statistical measure considered, MSE
= 0.00713 and MAPE = 0.0639) since, in this case,
unlike other models it uses the lagged SOC as a re-
gressor variable and not the SOC value at the same
point, which has a stronger linear relation with STN
as shown in Figures 4A and 5D. The corrected VAR

shows the best results among the regression models,
2159x276.8mm 4]

for which the minimum values of M
MAPE (=0.0395) were found. This
as a more appropriate predictor m
point in space, which is consistent
although being a global model (i.e.
equations 2a and 2b are fixed and
space), is presented as a bi-dimen
posed of two equations which tre
the relation between STN and SOC
adequate way, 1.e., there i1s no a hier
ables, both being treated in the sar
as random variables. The standar
model (scalar model) is, also, a glc
ever, 1s presented as a unidimensi
hierarchical treatment between STN
(only the variable STN 1s conside
able). Therefore, both statistical pe
(MSE = 0.00388 and MAPE = 0.1

values as compared to the correcte
|

e ——
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Table 1 - Predictive performance (10 last transect points) of standard regression, of state-space and of neural network

models, for soil total nitrogen STN.

Prediction models

Statistical measures

MSE MAPE
; Standard hnear 0.00388 0.04301
Scalar Regression
AR (1) error 0.00389 0.04279
without latent _ Standard VAR 0.00713 0.06390
) Vector Auto-regression
variable Corrected VAR 0.00350 0.03905
) ) GAM/splines 0.00435 0.04359
No-parametric regression
GAM/lowess 0.00361 0.04084
o Feedforward 0.00313 0.03727
Artificial neural networks
with latent Recurrent 0.00279 0.03599
variable Standard 0.00096 0.02302
State-space models _
Dynamic 0.00288 0.03960

Table 2 - Predictive performance (10 first transect points) of standard regression, of state-space and of neural network

models, for soil total nitrogen STN.

Prediction models

Statistical measures

MSE MAPE
; Standard hnear 0.00483 0.04665
Scalar Regression
AR (1) error 0.00475 0.04601
without latent CtnmAdand TTAD N nn71e n n:ilnn

2159x276.8mm 4|
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Temporal variability of soil water storage evaluated
for a coffee field
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Abstract. Sampling field soils to estimate soil water content and soil water storage (S) is difficult due to the spatial
variability of these variables, which demands a large number of sampling points. Also, the methodology employed in most
cases is invasive and destructive, so that sampling in the same positions at different times is impossible. However, neutron

moderation, time domain reflectrometry, and, more recently, frequency domain reflectrometry methodologies allow

lﬂf‘RQIW:‘-IJ‘IPan at the came nnints nver lono time intervals This studv evalnates a et of neitron nrohe data collected at l
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Temporal processes of soil water status in a sugarcane field
under residue management

G. O. Awe « J. M. Reichert - L. C. Timm « O. O. Wendroth

Received: 1 August 2014 /Accepted: 12 October 2014 /Published online: 25 October 2014
© Springer International Publishing Switzerland 2014

Abstract cross-correlated with other variables, however, results
Background and aims The knowledge of soil water were not the same for the different soil depths and
storage 1s vital for rational agricultural management, treatments, Classical regression of SWS from combina-
and in soil-plant-water relations. This study was con- tions of log (V), ET and P gave satisfactory results,
ducted to evaluate the temporal processes of soil water however state-time analysis was better with higher R*

el e | I
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Applications of the
“State-Space”
approach:

“watershed” scale



South America a)
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-Native grassland;
-Annual cropping;
-Permanent
cropping;

-Native forest;
-Silviculture; and
-Cultivated pasture.
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Primary and secondary topographic
attributes: DEM

-Elevation;

-Slope;

-Aspect;

-Curvature;

-Upslope contributing area;
-Solil surface roughness;
-Soil wetness index;

-etc.



-Soll samples: spaced 250 m from
each other totalizing 100 samples;

- Evaluated soll layer: 0- 0.20 m depth

-Measured soil physical and hydraulic
properties: soll texture, soil bulk density,
SWRC, saturated hydraulic conductivity,
soil total porosity, soil organic carbon,
etc.



Preliminary Results



In Ks (saturated hydraulic conductivity)
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ACF of Macroporosity
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CCF - In Ks and Macroporosity
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Spectrum of In Ks
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The Co-spectrum identifies those spatial frequencies for which
two sets of observations are correlated with each other regardless
of their relative location (Nielsen & Wendroth, 2003).
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The Quadrature spectrum measures the contribution of the
different frequencies to the total covariance of the two sets of
observations when all of the cyclic variations of one set of
observations are delayed by a quarter period (Nielsen & Wendroth,
2003).
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Chapter 3

State-Space Analysis in Soil Physics

Ole Wendroth, Yang Yang, and Luis Carlos Timm

Abstract Over the past three decades, state-space models have been used in soil
physics mostly to describe spatial processes of transport- or biomass-related state
variables. The objective of this contribution on behalf of the second Brazilian
Soil Physics Meeting is to provide an introduction into the opportunities of state-
space models and to explain their conceptual differences and advantages compared to
current widely used analytical approaches that do not account for space/time covari-
ance behavior, measurement or model uncertainty. An overview on the diversity of
state-space model applications is provided. The opportunities of state-space models
for designing and analyzing experiments with and without treatments especiall;r

215.9x279.4mm 4|
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Chapter 5
State-Space Approach to Understand
Soil-Plant-Atmosphere Relationships

Luis Carlos Timm, Klaus Reichardt, Claudia Liane Rodrigues de Lima,
Leandro Sanzi Aquino, Letiane Helwig Penning, and Durval Dourado-Neto

Abstract This chapter presents two different state-space approaches to evaluate
the relation between soil and plant properties using examples of sugarcane, coffee
and forage. These state-space approaches take into account sampling positions and
allow a better interpretation of the data in relation to the field. Concepts of auto-
correlation and crosscorrelation functions are first introduced, followed by theore-
tical aspects of both state-space approaches. More emphasis is given to the last one
based on the Bayesian formulation, which gives more attention to the evolution of
the estimated observations. It is concluded that the use of these dynamic regression
models improve data analyses, being therefore recommended for several studies
involving time and space data series, related to the performance of a given soil-
plant-atmosphere system.
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Soil organic carbon estimation with topographic
properties in artificial grassland using a state-space
modeling approach
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Nanjing 210098, China; “Water Diversion and Irrlgatlon Engineering-technology Center, Yellow River Institute of
Hydraulic Research, Xinxiang 453003, China; Faculty of Agronomy, Federal University of Pelotas, Department
of Rural Engineering, P.O. Box 354, 96001-970, Pelotas, RS, Brazil; and *University of Saskatchewan,
Department of Soil Science, Saskatoon, Saskatchewan, Canada S7N 5A8.
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She, D., Xuemei, G., Jingru, S., Timm, L. C. and Hu, W. 2014. Soil organic carbon estimation with topographic properties in
artificial grassland using a state-space modeling approach. Can. J. Soil Sci. 94: 503-514. Knowledge of the distribution of
soil organic carbon (SOC) in artificial grasslands in semiarid areas is helpful in optimizing management for soil fertility
recovery and carbon sequestration. Accurate estimation of SOC with easy-to-obtain topographic properties can save
considerable labor and cost as well as protect the grassland from being disturbed by intensive soil sampling. In our study, a
total of 113 sampling points were setup within a patch of artificial grassland in a small catchment located in the north
Loess Plateau of China. State-space modeling and traditional linear regression were used to estimate the localized variation
of SOC in the 0- to 20-cm surface soil layer using five sclected topographic properties (elevation, slope, aspect, plan
curvature, and surface soil roughness). Soil surface roughness and plan curvature were identified as the most effective
variables for SOC estimation in state-space models. Soil surface roughness and plan curvature explained 92.5% and 84.5%
of the total variation of SOC, respectively. The best state-space model was the one using both plan curvature and surface
soil roughness, explaining 94.5% of the total variation of SOC, whereas the best linear regression model could only explain
15.9% of the total variation of SOC. The results indicate that all the derived state-space models performed better than the

equivalent linear regression models. Our study provides an insight into the possibility of accurate estimation of SOC only
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State-space estimation of soil organic carbon stock
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Ab stra ct Understanding soil spatial variability and
identifying soil parameters most determinant to soil organic carbon
stock is pivotal to precision in ecological modelling, prediction,
estimation and management of soil within a landscape. This study
investigates and describes field soil variability and its structural
pattern for agricultural management decisions. The main aim was

210%297mm 4]

a landscape will, therefore, provide information needed to
understand the structure and distribution pattern of SOC and
to identify soil determinants for its prediction for informed
decisions on soil management. Forests represent one of the
largest carbon pools on earth (van de Walle et al., 2001), and
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Assessment of Spatial Distribution of Selected Soil
Properties using Geospatial Statistical Tools

JOSHUA O. OGUNWOLE." EVELYN O. OBIDIKE.'*?
LUIS C. TIMM.? AZUBUIKE C. ODUNZE.!
AND DONALD M. GABRIELS*

'Department of Soil Science, Faculty of Agriculture, Institute for Agricultural
Research, Ahmadu Bello University, Samaru-Zaria, Nigeria
’Federal College of Forestry, Jos, Nigeria

‘Department of Rural Engineering, FAEM/UFPel, Pelotas, Brazil
*Department of Soil Management and UNESCO Chair on Eremology, Ghent
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To gain additional knowledge and better understand forest soil management on a small
scale, geostatistical analytical tools were emploved to examine the spatial distribution
in dry aggregate mean weight diameter (MWD) and other selected soil properties and
1o assess the possible relationships between MWD and other soil properties. Selected
properties of forest soils collected along a 300-m transact in the Nimbia Forest Reserve
of Nigeria exhibited moderate to high variability in distribution with sodium ion dis-
playing the greatest variability [coefficient of variation (CV, 91.2%)] and principal
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New research topics:

present



Multivariate Empirical Mode
Decomposition method (MEMD)

ODbjective:

» to characterize scale-dependent spatial
relationships between soil properties of non-
stationary and nonlinear systems, into
different intrinsic mode functions (IMFs) and
residue representing different scales.

Huang, N.E. et al. The empirical mode decomposition and Hilbert
spectrum for nonlinear and non-stationary time series analysis.
Proc Roy Soc London A, 1998, 454:903-995.
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Intrinsic mode functions; Landscape transects; Multivariate empirical mode decomposition; Scale; Soil hydradlic property

Saturated hydraulic conductivity (52 is affected by various factors operating at different scales. This study identified the multi-scale spatial
relationships hetween & and selected basic soil properties (soil organic matter (SOM), clay, silt, and zand contents, and bulk densityd
along two landscape transects fwith various soil textures and land use covers) an the Loess Plateau. Multivariate empirical mode
decomposition (MEMD) vielded four different intrinsic mode functions (IMF=) for the multivariate data series of each transect according to
the scale of occurrence. The dominant scales interms of explained wvariance of £ were IMF1 (scale: 403 m) for transect 1, and IMF1 and
IMF2 {scale: 407 and 775 m) for transect 2. The multi-scale correlation between & and soil properties was more complex for transect 1
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Heywords:
Intrinsic mode functions; Landscape transects; Multivariate empirical mode decomposition; Scale; Soil hydradlic property

Saturated hydraulic conductivity (£ is affected by various factors operating at different scales. This study identified the multi-scale spatial
relationships between & and selected basic soil properies (soil organic matter (SOM), clay, silt, and sand contents, and bulk density)
along two landscape transects fwith various soil textures and land use covers) an the Loess Flateau. Multivariate empirical mode
decomposition (MEMD) vielded four different intrinsic mode functions (IMF ) for the multivariate data series of each transect according to
the scale of occurrence. The dominant scales interms of explained wvariance of £;were IMF1 {scale: 403 m) for transect 1, and IMF1 and
IMF2 (scale: 407 and 775 m) fortransect 2. The multi-scale correlation between K, and soil properies was more complex fortransect 1
due to a more fragmented landscape. For each IMF orresidue, K was predicted using the identified factors that significantly affected it at
that IMF scale or residue. The summation of the four predicted IMF s and the residue predicted & atthe measurement scale, and was
more accurate than predictions based on simple multiple linear regressions between & and the other soil properties. Soil padicle size
components were the main contributors in explaining &, variability for both landscape transects, mostly due to their contributions from
IMF1; hiowever, SOMwas also a8 major cantributor for transect 2, mainly due to contribotions from IMF 2. Using MEMD has great potential in
characterizing scale-dependent spatial relationships hetween soil properies in complicated landscape ecosystems.
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New research topics: near
future (Cont.)

Wavelet analysis:

-to study nonstarionary spatial series locally with detall
matched to their scale, i.e., broad features at a large scale
and fine features at small scales (Si, B.C. - 2003 — Vadose
Zone J.)
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