Toward a More Comprehensive and Mechanistic Approach to Simulation of Interacting Plant and Soil Processes

Dennis Timlin¹, David Fleisher¹, Soo-Hyung Kim², V.R. Reddy¹

¹USDA-ARS Crop Systems and Global Change Laboratory

²University of Washington

How can Soil Physics Contribute to Crop Modelling?

You also need to know about Biology and how the components interact

Overview

- Research Approach
- Quantification of temperature effects
- Coupled gas exchange models for photosynthesis and energy balance
- Water stress effects on plants
- Some examples

MODELING STARTS WITH DATA AND QUANTIFIABLE RELATIONSHIPS

Data Are First Obtained from Controlled Experiments in Growth Chambers

Characteristics of Sunlit Controlled Environment Chambers

- Control and monitor aerial and soil environments
- Monitor whole canopy gas exchange (Pg, Respiration, Transpiration)
- Measure gas leakage rates with a N₂O system to maintain accuracy

SPAR chamber

- Sunlit; controls air T, CO₂, RH, fertigation; measures CER, ET, canopy T, soil water content, root growth
 - A: Clear plexiglas cuvette (2.2 *1.4*2.5 m)
 - B: One cubic meter soil bin
 - C: Air handler
 - D: Soil surface
 - E: Doors

Field Experiments Are Also Carried Out

Collecting Potatoes for a Spatial Nitrogen Study

Sampling is a Busy Time

TEMPERATURE RESPONSE

Temperature Response Functions

- Temperature is a key environmental variable regulating growth and development of plants
- Biological organisms respond to temperature in nonlinear fashion
- Temperature responses best modeled using non-linear temperature functions

Non-linear temperature dependence vs thermal time (GDD)

Fig. 1. Leaf appearance rates with standard errors vs. observed average daily temperature for experiments D0 and D1. The nonlinear temperature response model based on the modified β distribution parameters (Table 3) is shown as the solid line.

Fig. 3. Leaf appearance data separated for each temperature treatment (T1 through T6) in experiment D1. Data points are the averaged value of five observations at each measurement date (error bars not shown for clarity).

Beta distribution models mimic the response well only with biologically meaningful parameters

Non-Linear Temperature Response

Modified beta-distribution function (Yan and Hunt, 1999)

$$r = R_{\max} \left(rac{T_{ceil} - T}{T_{ceil} - T_{opt}}
ight) \left(rac{T}{T_{opt}}
ight)^{rac{T_{opt}}{T_{ceil} - T_{opt}}}$$

- r leaf appearance rate, [leaves plant⁻¹ day⁻¹]
- \mathbf{R}_{max} maximum r, [leaves plant⁻¹ day⁻¹]
- T_{ceil} ceiling temperature (r = 0), [°C]
- T_{opt} optimal temperature (r = R_{max}), [°C]
- Similar T_{opt} (\approx 31.4) and T_{ceil} (\approx 41.0) for various growth and developmental events in maize

Temperature dependence of leaf initiation and appearance in corn

fast a leaf reaches its maximum size

PHOTOSYNTHESIS

Photosynthesis (leaf level) in Maize as a function of CO₂ and temperature

high water vapor content low CO₂ guard cell guard cell stoma stoma water vapor CO_2 high CO2 low water vapor content conten Diffusion

http://supercoolandawesome.blogspot.com/2013/05/gas-exchange-in-aquatic-and-terrestrial.html

Enzymatic based reactions to take up CO₂

Photosynthesis can be considered a series of gas exchange processes.

 CO_2 diffuses into the leaf interior and water vapor diffuses out.

The higher the CO2 concentration, the less the water vapor diffusion. Stomata do not open as widely

Photosynthesis

- CO2 supply (source)
 - Diffusion equation
- Biochemical demand (sink)
 - Uses Michaelis-Menton kinetics
 - von Caemmerer (2000)
- Accounts for the CO2 concentrating mechanism and related leakage
 - Function of Ci, leaf temperature and PAR

The sink component

C₄ photosynthesis model

Model for leaf gas-exchange (source component)

- Transpiration and leaf temperature: Penman's linearized energy budget equation
- Numerically solved for convergence

Calculation of Stomatal Conductance (g_s) and Transpiration (E)

$$g_{s} = g_{0} + g_{1}A \frac{h_{s}}{(C_{s} / P_{a})} f(\psi_{l})$$

 h_s is relative humidity, C_s is leaf surface CO2 concentration Pa is air pressure, A is net photosynthesis, g_o and g_1 are parameters, $f(\Psi)$ adjusts for water stress

$$E = 2g_v \left(\frac{e_s(T_L) - e_a(T_a)}{P_a}\right)$$

An accurate estimation of leaf temperature is important

 g_v is conductance to water vapor (a function of (g_s) , e_s is vapor pressure of the leaf surface at leaf temperature (T_L) , e_a is vapor pressure of the atmosphere at air temperature (T_a) .

Challenges in modeling gas exchange

- Photosynthesis, transpiration, stomatal conductance, and leaf energy balance are closely linked to each other
- These processes should be coupled to make realistic predictions
 - Coupling enables estimation of unknown variables

Energy balance equation

 $R_{abs} = L + H + \lambda E$

- *R*_{abs}: Absorbed radiation
- *L*: Long-wave radiation
- *H*: Sensible heat loss
- λE: Latent heat loss (evaporative cooling)

Evaporative cooling

Calculation of Leaf Temperature

Where T_a is air temperature, R_{abs} is absorbed long-wave and short-wave radiation per surface leaf area, ε is leaf thermal emissivity (set to 0.97), σ is the Stefan-Boltzmann constant (5.67x 10-8 Watts m⁻² K⁻⁴), *D* is vapor pressure deficit, *s* is the slope of the slope of the vapor pressure deficit-temperature curve Δ divided by atmospheric pressure. γ is the psychrometric constant (6.66 x 10⁻⁴). Total water vapor conductance per surface leaf area, g_{ν} , is calculated from stomatal conductance and heat conductance at the boundary layer:

$$g_v = 0.5 \frac{g_s g_{bw}}{g_s + g_{bw}}$$

Note that g_v requires g_s and is needed to calculate leaf temperature. Hence iteration is required

Temperature dependence of transpiration at elevated CO₂

 Consistent decrease in transpiration. Dependence on leaf temperature is similar.

Maize transpiration response – CO₂

Adapted from: Kim, S.-H., Sicher R.C., Bae H., Gitz, D.C., Baker, J.T., Timlin, D.J. and Reddy. V.R. Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biol. 12:588-600. 2006.

Leaf temperature of maize at elevated CO₂

Increased leaf temperature

Leaf A-C_i response of corn and rice

Biomass Calculated by MAIZSIM from Farms on the Eastern Shore of MD

MD, 2007

MD, 2006

Kim, S-K, Y. Yang, D.J. Timlin, D. Fleisher, A. Dathe, V.R. Reddy. Modeling Nonlinear Temperature Responses of Leaf Growth, Development, and Biomass in MAIZSIM. Agron. J. 104:1523-1537. 2012

0 20 40 60 80 100120140 Days after emergence

WATER STRESS

Simple Method to Model Water Stress

Limitations of Current Modeling Approaches

- These are empirical approaches that mimic the impact of water stress on growth and yield not the mechanism.
- Energy balance is not always modeled
- No stomatal response (effects on carbon assimilation) to increased CO₂ or temperature
- Assumes stomata control transpiration and photosynthesis (and growth) proportionally

Response of Plants to Water Availability

- Stomatal closure decreases water loss more than it decreases carbon assimilation
- Linking water loss and photosynthesis as a linear relationship to model water stress will result in underprediction of yields.

Leaf water potential is a basis for water stress calculations.

Simulating carbon assimilation rates and transpiration in growth chambers

Water Use, Observed and from Simulations with SPAR Environment Data

Biomass

TESTING AND SOME APPLICATIONS

Water content

Nitrogen uptake

Root growth

Water uptake

Root growth

Radiation use efficiency from simulations for three temperature scenarios

What is the reason for the temperature effect?

		i.
建制		5.5
		24
	NA.	
V	en se	1
NS	Mar'	18
A		21
MU	and the	
	10	57
Vi		24
M		
N	操作	
		有大
	ALC: N	

Tempe	rature Re	egime		5
Avg	+3	+6		4
22.0	25.0	27.5		- ³
nol m ⁻² s ⁻¹) 5	5 - Photo 0 - 5 -	esynthesis		Day of Year
и) А (µ) 3	0 - 9	_ • • - 	 Elevated Ambient 	⊷•Normal +3 ↔ Normal ••••Normal +6
2	5 20 L	25 30 .eaf temperatu		High temperatures -> rapid growth and smaller leaves-> rapid

senescence.

Mean Water Content at 60 cm Depth

Closing notes

- Complex models are possible.
 - Our experience indicates that although they require more parameters, many of the parameters have physical meaning and can be fit independent of the environment.
- Growth chambers are useful to provide finally controlled conditions to investigate environmental effects on plant growth and development –
 - Very quantitative
 - Fine time scales
- We have a potato (SPUDSIM) and a maize (MAIZSIM) model. soybean and wheat are under development

Closing notes (cont'd)

MAIZSIM is open source and available on GitHub. Search using keywords Github and MAIZSIM.

The Coupled Model

A, $g_{s,j} c_{j}$, T_{l} $E_{potential} = 2g_v \left(\frac{e_s(T_L) - e_a}{P_a}\right)$

 $\mathsf{R}_{\mathsf{stem}}$

A, g_s, c_i $g_s = f(A, h_s, c_{i, \psi_{leaf}})$ $A = f(g_s, T_l, R_{abs}, c_i)$ $T_{l} = \frac{R_{abs} - \varepsilon_{s}\sigma T_{a}^{4} - \lambda J_{stem}}{c_{p}(g_{r} + g_{Ha})}$ $J_w = (\psi_s - \psi_l)/R_p$ $R_p = R_{sr} + R_r + R_{stem}$

Current Modeling Approaches Can be Improved

• We need a more physiologically based approach that takes into account processes that plants have developed to optimize carbon assimilation and minimize water loss under all conditions of water availability and especially water deficit situations.